Neurogenetics of vesicular transporters in C. elegans.

نویسندگان

  • J B Rand
  • J S Duerr
  • D L Frisby
چکیده

The nematode Caenorhabditis elegans has a number of advantages for the analysis of synaptic molecules. These include a simple nervous system in which all cells are identified and synaptic connectivity is known and reproducible, a large collection of mutants and powerful methods of genetic analysis, simple methods for the generation and analysis of transgenic animals, and a number of relatively simple quantifiable behaviors. Studies in C. elegans have made major contributions to our understanding of vesicular transmitter transporters. Two of the four classes of vesicular transporters so far identified (VAChT and VGAT) were first described and cloned in C. elegans; in both cases, the genes were first identified and cloned by means of mutations causing a suggestive phenotype (1, 2). The phenotypes of eat-4 mutants and the cell biology of the EAT-4 protein were critical in the identification of this protein as the vesicular glutamate transporter (3, 4). In addition, the unusual gene structure associated with the cholinergic locus was first described in C. elegans (5). The biochemical properties of the nematode transporters are surprisingly similar to their vertebrate counterparts, and they can be assayed under similar conditions using the same types of mammalian cells (6, 7). In addition, mild and severe mutants (including knockouts) are available for each of the four C. elegans vesicular transporters, which has permitted a careful evaluation of the role(s) of vesicular transport in transmitter-specific behaviors. Accordingly, it seems appropriate at this time to present the current status of the field. In this review, we will first discuss the properties of C. elegans vesicular transporters and transporter mutants, and then explore some of the lessons and insights C. elegans research has provided to the field of vesicular transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors.

We have identified the Caenorhabditis elegans homolog of the mammalian vesicular monoamine transporters (VMATs); it is 47% identical to human VMAT1 and 49% identical to human VMAT2. C. elegans VMAT is associated with synaptic vesicles in approximately 25 neurons, including all of the cells reported to contain dopamine and serotonin, plus a few others. When C. elegans VMAT is expressed in mammal...

متن کامل

The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter.

Mutations in the unc-17 gene of the nematode Caenorhabditis elegans produce deficits in neuromuscular function. This gene was cloned and complementary DNAs were sequenced. On the basis of sequence similarity to mammalian vesicular transporters of biogenic amines and of localization to synaptic vesicles of cholinergic neurons in C. elegans, unc-17 likely encodes the vesicular transporter of acet...

متن کامل

Neurogenetics, in Caenorhabditis elegans

The human brain is an extraordinarily complex and beautiful organ. It has one hundred billion neurons and an inestimable number of synaptic connections. Since there are very few opportunities to ethically test experimental hypotheses on the human brain, we rely on model organisms to understand how neurons work in humans. Such an organism, the nematode Caenorhabditis elegans, with a total of onl...

متن کامل

The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype.

The mechanisms that specify the vesicular phenotype of inhibitory interneurons in vertebrates are poorly understood because the two main inhibitory transmitters, glycine and GABA, share the same vesicular inhibitory amino acid transporter (VIAAT) and are both present in neurons during postnatal development. We have expressed VIAAT and the plasmalemmal transporters for glycine and GABA in a neur...

متن کامل

Vesicular neurotransmitter transporters: an approach for studying transporters with purified proteins.

Vesicular storage and subsequent release of neurotransmitters are the key processes of chemical signal transmission. In this process, vesicular neurotransmitter transporters are responsible for loading the signaling molecules. The use of a "clean biochemical" approach with purified, recombinant transporters has helped in the identification of novel vesicular neurotransmitter transporters and in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 14 15  شماره 

صفحات  -

تاریخ انتشار 2000